Viatcheslav (viatcheslav) wrote,
Viatcheslav
viatcheslav

Задача о двух конвертах

Есть такие задачи, из области вероятностных парадоксов.

Задача о двух конвертах - известный парадокс, демонстрирующий как особенности субъективного восприятия теории вероятностей, так и границы её применимости. В облике двух конвертов этот парадокс предстал в конце 1980-х годов, хотя в различных формулировках известен математикам с первой половины XX века.

два конверта



Называется эта загадка «Парадокс (проблема) двух конвертов» (Two envelopes problem). В различных вариациях и формулировках она известна математикам с 1930 года, хотя именно в облике двух конвертов была описана только в конце 1980-х.

Итак, играем. Вам предлагаются два конверта с деньгами (взвешивать, ощупывать и просвечивать их, понятно, нельзя). Вы знаете только, что в одном из них содержится сумма ровно вдвое большая, чем во втором, но в каком и какие именно суммы — совершенно неизвестно. Вам позволено открыть любой конверт на выбор и взглянуть на деньги в нём. После чего вы должны выбрать — взять себе этот конверт или обменять его на второй (уже не глядя).

Вопрос — как вам поступить, чтобы выиграть (то есть получить большую сумму денег)? Кажется, что шанс на выигрыш и проигрыш всегда одинаков (50%) вне зависимости от того, оставите ли вы себе открытый конверт или возьмёте вместо него второй. Ведь вероятность нахождения большей суммы в конверте A изначально такая же, как вероятность, что более внушительные деньги лежат в конверте B. И открытие одного из конвертов (A) ничего не говорит вам о том — видите вы наибольшую или наименьшую сумму из двух предложенных. Однако вычисление средней ожидаемой «стоимости» второго конверта говорит об ином.

Допустим, вы увидели $10. Стало быть, в другом конверте лежат либо $5, либо $20 с вероятностью 50 х 50. По теории вероятности средневзвешенная сумма в конверте B равна: 0,5 х $5 + 0,5 х $20 = $12,5. Разумеется, открыв альтернативный конверт, вы увидите не эту сумму, а либо 20, либо 5 долларов, просто по условиям игры. Но 12,5 — такова (по вычислениям), как кажется, будет средняя сумма выигрыша на кон при проведении достаточно большого числа раундов, если вы всегда будете менять конверты.

И этот результат не зависит от первоначальной суммы денег. Ведь в разных раундах могут использоваться разные пары (10 и 20, 120 и 60, 20 и 40, 120 и 240 и так далее). То есть в общем виде, если в конверте А лежит сумма С, то статистически ожидаемая сумма в конверте B составит 0,5 х С/2 + 0,5 х 2С = 5/4 С.

Таким образом, теория говорит, всегда выгодно менять первоначальный свой выбор (12,5 больше 10), хотя в отдельных раундах вы будете проигрывать. Но против такого вывода восстаёт интуиция, которая просто кричит о принципиальном равенстве конвертов. Ведь поменяв их вы можете начать все рассуждения сначала (не открывая второй) и поменять снова.

На разрешение данного парадокса не один раз претендовали различные учёные. Более того, идут даже споры о том, как понимать — в чём тут заключается сам парадокс. Но математическое сообщество до сих пор не пришло к консенсусу, так что задача осталась открытой.


По моему мнению, в данном случае нарушена логика в самой постановке вопроса.

Почему выигрышем считается "получить большую сумму денег". Это же нелогично. Вот представьте, идете вы себе спокойно, денег у вас ровно n условных денег и тут вам предлагают поучаствовать, по сути, в беспроигрышной игре. Какая разница, какой вы конверт возьмете, все равно получится больше того, что есть у вас в данный момент (n + x денег).
Tags: теория вероятности, эксперимент
Subscribe

Recent Posts from This Journal

  • Post a new comment

    Error

    default userpic

    Your IP address will be recorded 

    When you submit the form an invisible reCAPTCHA check will be performed.
    You must follow the Privacy Policy and Google Terms of use.
  • 3 comments